
Istrobotics
Robotour 2018, 16.9.2018
Pavol Boško, Peter Boško, Radoslav Kováč, Tomáš Kováč, Ivana Kováčová

 2016 2017 2018

NEW GPS TESTS

• Motivation: poor GPS performance last year

• Old GPS (blue): MTK MT3333 GPS/GLONASS

• Holux M-215+ Dual GNSS: GPS/GLONASS

• -165dBm, 66 searching, 22 tracking channels

• New GPS (green): Ublox NEO-M8 + Compass

• Concurrent reception of up to 3 GNSS
(GPS, Galileo, GLONASS, BeiDou)

• –167 dBm, 72 channels, 30 tracking

• Position: every 200ms

• Issues: sometimes no course for more than 1s

• Results: the same position accuracy (10-20m)

GPS GROUND PLANE

• U-Blox GPS Antenna documentation

• Patch antennas - flat surface is ideal

• can show very high gain, if mounted
on large ground plane (70x70mm)

• USB 3.0 impact on GPS

• Intel paper: USB 3.0* Radio Frequency
Interference Impact on 2.4 GHz Wireless
Devices

• We used simple shield for GPS

• Results: great improvement (3m accuracy)

NEW 170FOV CAMERA

• oCam : 5MP USB 3.0 Camera

• OmniVision OV5640 CMOS image sensor

• Original lens Field Of View: 65 Degree

• Exchangeable Standard M12 Lens

• Separate: 170 Degree Wide Angle

• (standard accessory also for GoPro cameras)

• we 3d-printed an adjustable camera holder
(fixed by screws)

• we broke the USB connector during
the first test drive

CAMERA CALIBRATION

• Fisheye image warping correction

• OpenCV supports Camera Calibration

• cv2.calibrateCamera()

• cv2.undistort()

• Test in Python

• execution times: 120-200 ms

• Not used because of the performance impact

• Better approach: correct only mapping
between XY points and local map coordinates

CAMERA ISSUES

• Front side of the robot on every image

• problem to paint it with the “road” color

• solution: to be fixed by SW masking

• Image is too dark

• sun/sky causes high contrast images

• our color maps did not work correctly

• solution: use a shield to hide sky?

• Roads appear too narrow

• algorithm was not able to use GPS navig. on roads

• solution: local-map geometry to be corrected

NAVIGATION – ROUTE PLANNING

• OpenStreetMap data export

• filter segments: footway, track with <grade3

• Dijkstra's Shortest Path Algorithm

• 418 nodes, 504 segments

• Performance: < 2ms

• Visualisation: kml export, cpp export

• Navigation: keep azimuth towards a point
that is 10m along planned route

QR CODES

• ZBar bar code reader

• open source software suite

• supports: EAN-13/UPC-A, UPC-E, EAN-8, Code
128, Code 39, Interleaved 2 of 5 and QR Code

• Performance impact:

• one execution: 50-200ms

• our target 30-50ms per frame

• Solution: images are scanned for QR codes
only when waiting for navigation coordinates

VISUALISATION

• Visualisation in web browser

• works on notebook/tablet/phone

• Messages from log files

• last set of lines matching selected substrings

• Info: robot display, gps, processing, calibration

• Log parser is exporting interesting data do .json file

• Web page performs Ajax JSON requests every 1 sec

• Images are only downloaded on demand (checkbox)

ROUND4 - DISK FULL
• Round4 failure: we run out disk space

• Flash storage capacity: 64GB eMMC

• Storing to disk:

• Log file

• JPG, PNG, KML snapshots – 3-4 images/second

• ROUND2 statistics

• 33 minutes, 28.000 files

• Log file: 920MB (8.600.000)

• Camera and vision JPGs: 6.500 each

• Lidar and Grid PNGs: 6.000 each

• Navigation KMLs: 1.500

PROBLEMS

• ROUND1 (successful loading):

• not able to make a turn-around near lake

• ROUND2 (successful loading + unloading):

• turning out of the road based on navig. azimuth
(no grass)

• ROUND3 (failed before loading), new camera:
• camera was pointing too high

• sometimes not recognising road at all

• SW bug in “wrongway” algorithm

• ROUND4 (successful loading + unloading):

• issue with disk full terminated the application

GENERAL SLIDES

ROBOT CHASSIS

• RC model: Traxxas E-Maxx 4x4 monster truck

• Top Speed: 48 km/h

• Waterproof electronics, servos

HARDWARE DESIGN

HARDWARE
• Odroid-XU4: 2GHz 8-core, 2GB RAM, 64GB Flash

• Arduino Mega: 16MHz, 8KB RAM

• 2x Arduino Nano: 16MHz, 2KB RAM

• Arduino Pro Mini: 16MHz, 2KB RAM

• 2D Lidar: RoboPeak RPLIDAR 360 ($400)

• Camera: Odroid USB Cam (640x480, 65 FOV)

• Mouse type GPS/Glonass: Holux M-215+

• Compass: Bosch BNO055

• 5x Sonar: HC - SR04

• LCD & OLED displays, 8x LED

Odroid-XU4 vs Raspberry Pi3

Raspberry Pi3 Odroid-XU4

CPU ARM
Cortex-A53

Samsung
Exynos5422

Cortex

Clock 1.2 GHz 2 GHz

Cores 4x 8x

RAM 1GB LPDDR2 2GB LPDDR3

Flash microSD eMMC5.0 HS400

Ethernet 10/100 Mbit 1 Gigabit

USB 4× USB 2.0 2x USB 3.0
1x USB 2.0

R-Pi2 R-Pi3 O-XU4

Image
processing

164,4 ms 167,3
ms

26,5
ms

JPG/PNG
writing

- - 3x faster

Processing lag 12 sec 2 sec 100 ms

SOFTWARE
• Operating system: Ubuntu 16.04 Mate

• Source codes: C++, 430kB

• 2017: 340kB, 2016: 180kB

• Libraries: OpenCV (vision), GeographicLib (Geo),
Zbar (QR-Codes), Libxml2 (.osm), log4cxx
(logging)

• Main application + 8x pthreads

• 4x sensors (Camera, Lidar, GPS , Compass)

• image capturing + vision processing

• output: image saving (1GB of data/ round)

• control board (Compass)

SOFTWARE DESIGN – PROCESSING

 UPDATE_GRID – VISION output
 UPDATE_GRID – LIDAR data

READ_SENSOR_DATA – gps, compass

Calculate NAVIGATION ANGLE

CHECK_GRID for obstacles

COMPASS_CALIBRATION

WRONG_WAY behavior

OBSTACLE_AVOIDANCE – min/max

NAVIGATION

every 20ms CAMERA capture – 30 fps

LIDAR data capture – 7x /sec

VISION processing – 35 ms

GPS data capture

CONTROL BOARD comm.

SAVE images to disk – 3x /sec

LIDAR – obstacle detection

• Obstacle detection condition (red):

• If distance is < 100 cm

• Filtering: distance < 1cm (grey)

• Stop condition (pink):

• Check angle: -45 to +45 degrees

• If distance is < 50 cm at 3 diff. degs

• Sonars were also used (rain issue)

• Obstacle avoidance (green/white)

• Find OK intervals of > 20 degrees

• Choose the closest to going straight

VISION – approach

• Our approach: lidar-like local map

• For any seen angle is obstacle closer
than 1 meter?

• 1 meter or to the image border

• Algorithm:

• Pixel color classification

• Evaluate grid points

• Calculate distance to obstacle

• Find OK intervals – same like LIDAR

VISION – Pixel color classification

• Approach:
• Choose sample pixel blocks (32x32)

from training images

• Calculate 4 clusters centers in color
space (OpenCV kmeans)

• Calculate cluster radius (histogram
based)

• Repeat for 2 classifiers : road and off-
road (grass)

• HSV color space + Euclidian distance

• Tool was developed - to define pixel
blocks and evaluate images

VISION – Algorithm
• Pixel color classification - 4 results:

• Road (red)

• Off-road (blue)

• Both (green)

• None (grey)

• Evaluate grid points

• Cca 1000 points in 37 lines (5 deg)

• Evaluating nearby pixels (80x80)

• Majority of “Road” pixels is checked

• Calculate distance to obstacle

• Find OK intervals + merge with LIDAR

WAYPOINT NAVIGATION

• Navigation points: 26 manually defined points

• GPS positions taken from OpenStreetMap

• Pickup and dropoff points in arrays (navig.cpp)

• Navigation path – defined by a string
“N2N1 *1 M4M5N7M3M8 *2 M7M2M3N7M5N3”

• Compass calibration:

• interval of 7 seconds - robot is moving straight

• gps and compass azimuths to be fixed

• performed every 30 seconds – 3 minutes

WORLD MAP – BUILDING LOCAL GRID

• Local grid map

• to store polar information from lidar and vision

• 1 cell: 10 x 10 cm, 1 byte pre cell, array[2000][2000]

• always overwriting with new data - no heatmap

• Local position taken from GPS + odometry

• wheel encoders provide speed information

• Colors used for visualization

• Blue – grass (not-a-road) detected

• Red – lidar obstacle

• Green - no obstacle (light green = both sensors)

PROBLEMS – VISION FAILS DETECT ROAD

FREE SOURCE CODES

• Sources codes are available at GitHub
as public project Istro RT:

 https://github.com/lnx-git/istro-rt

THANK YOU

	Slide 1
	2016 2017 2018
	Slide 3
	NEW GPS TESTS
	GPS GROUND PLANE
	NEW 170FOV CAMERA
	CAMERA CALIBRATION
	CAMERA ISSUES
	Slide 9
	NAVIGATION – ROUTE PLANNING
	QR CODES
	VISUALISATION
	ROUND4 - DISK FULL
	PROBLEMS
	GENERAL SLIDES
	ROBOT CHASSIS
	HARDWARE DESIGN
	HARDWARE
	Odroid-XU4 vs Raspberry Pi3
	SOFTWARE
	SOFTWARE DESIGN – PROCESSING
	LIDAR – obstacle detection
	VISION – approach
	VISION – Pixel color classification
	VISION – Algorithm
	WAYPOINT NAVIGATION
	WORLD MAP – BUILDING LOCAL GRID
	Slide 28
	PROBLEMS – VISION FAILS DETECT ROAD
	FREE SOURCE CODES
	THANK YOU

